
Chapter 2 — Introduction to MIPS 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 2

The MIPS Processor and
Instruction Set

Chapter 1 Recap

n In my opinion, knowledge of hardware improves
software quality – compilers, OS, threaded programs,
memory management.

n Important trends to follow:
n Transistor sizing.
n Move to multi-core.
n Slowing rate of performance improvement.
n Power/thermal constraints.
n Long memory/disk latencies.

n Reasoning about performance – clock speeds, CPI,
benchmark suites, performance equations.

Chapter 2 — Introduction to MIPS 2

Performance Equation Review
n Basic performance equations:

or

§ These equations separate the key factors that affect
performance:
§ The CPU execution time is measured by running the program.
§ The clock rate is usually given.
§ The overall instruction count is measured by using profilers or

simulators.
§ CPI varies by instruction type and the instruction set

architecture.

!"# $%&' = (*+,*- *.*+' $%&')(%01$23*$%,0 *,30$)(!"4)

!"# $%&' = (%01$23*$%,0 *,30$)(!"4)
+,- 25$'

The MIPS Processor

n Used as an example throughout the text book.
n Decent share of embedded core market:

n Applications in consumer electronics, network/storage
equipment, cameras, printers, …

n https://en.wikipedia.org/wiki/MIPS_architecture

https://en.wikipedia.org/wiki/MIPS_architecture

Chapter 2 — Introduction to MIPS 3

Two Key Principles of Computer Design
1. Instructions are represented as numbers and, as

such, are indistinguishable from data.

2. Programs are stored in alterable memory (that can
be read or written to) just like data.

§ Stored-program concept
§ Programs can be shipped as files

of binary numbers.
§ Computers can inherit current and

legacy software provided they are
compatible with an existing
Instruction Set Architecture (ISA) –
leads industry to align around a
small number of ISA’s.

Accounting prg
(machine code)

C compiler
(machine code)

Payroll
data

Source code in
C for Acct prg

Memory

Instruction Execution
Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

n Get the instruction.
n Decide what kind of instruction it is.
n Get necessary data.
n Execute the instruction.
n Store the result.
n Repeat forever.

Chapter 2 — Introduction to MIPS 4

Instruction Execution Example

n C instruction: x = a+b;
n Assembly instruction: add a,b,x

n Step 1: Fetch the instruction
n Step 2: Determine it is an add instruction
n Step 3: Fetch the data items a and b
n Step 4: Do the addition
n Step 5: Store the result in x
n Step 6: Go to step 1

Instruction
Fetch

Instruction
Decode

Operand
Fetch

Execute

Result
Store

Next
Instruction

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Typical Fetch-Execute Processor Architecture

Chapter 2 — Introduction to MIPS 5

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Initialize Program Counter (PC) to Point to First Instruction

Activate Control Logic

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Chapter 2 — Introduction to MIPS 6

Route Address to Program Memory

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Route Instruction to Instruction Register (IR)

Chapter 2 — Introduction to MIPS 7

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Select Appropriate Data From Register File

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Route Data to Arithmetic Logic Unit (ALU)

Chapter 2 — Introduction to MIPS 8

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Do the Computation

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Store the Result

Chapter 2 — Introduction to MIPS 9

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Increment Program Counter to Point to Next Instruction

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Increment Program Counter to Point to Next Instruction

Chapter 2 — Introduction to MIPS 10

Data In

Address

Program
Memory

Control
Logic

Rdest

Rs

Rt

Instruction Register

Data
Memory

(Register File)

Program Counter (PC)

ALU

4

Execute Next Instruction

Instruction Set

n The repertoire of instructions of a computer.
n Different computers have different instruction sets, but

with many aspects in common.
n Important design principles when defining an ISA:

n Keep the hardware simple – the CPU is most efficient when
executing basic operations.

n Keep the instruction formats regular – simplifies the
decoding/scheduling of instructions.

Chapter 2 — Introduction to MIPS 11

MIPS (RISC) Design Principles

n Simplicity favors regularity:
n Fixed size instructions.
n Small number of instruction formats.
n Opcode always the first 6 bits in an instruction.

n Smaller is faster:
n Limited instruction set.
n Limited number of registers in the register file.
n Limited number of addressing modes.

n Make the common case fast:
n Arithmetic operands taken only from the register file.
n Allow instructions to contain immediate operands.

MIPS Memory Map

n The static data segment
is for constants and other
static variables.

n The dynamic data
segment (heap) is for
structures that grow and
shrink (e.g., linked lists)
n Allocate space on the

heap with malloc() and
free it with free() in C.

Memory

0x 0000 0000

Text
(Your code)

Reserved

Static data

0x 0040 0000

0x 1000 0000
0x 1000 8000

0x 7f f f f f f c
Stack

Dynamic data
(heap)

$sp

$gp

PC

Chapter 2 — Introduction to MIPS 12

MIPS Instruction Class Distribution

n Frequency of MIPS instruction classes for SPEC2006.

Instruction
Class

Frequency
Integer Float Pt.

Arithmetic 16% 48%
Data transfer 35% 36%
Logical 12% 4%
Cond. Branch 34% 8%
Jump 2% 0%

MIPS Architecture
n The MIPS architecture is considered to be a typical RISC

architecture:
n Simplified instruction set => easier to study

n Programmable storage:
n 32 x 32-bit General Purpose Registers (r0 = 0)
n 32 x 32-bit Floating Point registers
n Special purpose registers - HI, LO, PC
n 2^32 bytes of addressable main memory

n Memory is byte addressable:
n Words are 32 bits = 4 bytes
n Words start at multiple of 4 address, referred to as word-aligned.

Chapter 2 — Introduction to MIPS 13

MIPS Register File
n Holds thirty-two 32-bit registers

n Two read ports and
n One write port

§ Registers
§ Are faster than main memory:

- But register files with more locations
are slower (e.g., a 64 word file could
be as much as 50% slower than a 32 word file).

§ Are easier for a compiler to use:
- e.g., (A*B) – (C*D) – (E*F) can do multiplies in any order vs.

using data on a stack.

§ Can hold variables so that:
- Code density improves (since registers are named with fewer

bits than a memory location).

Register File

src1 addr

src2 addr

dst addr

write data

32 bits

src1
data

src2
data

32
locations

325

32

5

5

32

write control

MIPS-32 ISA

n Instruction Categories
n Computational
n Load/Store
n Jump and Branch
n Floating Point

R0 - R31

PC
HI
LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

Chapter 2 — Introduction to MIPS 14

n MIPS fields are given names to make them easier to
refer to. For R-type instructions:

MIPS Instruction Fields

op rs rt rd shamt funct

op 6-bits opcode that specifies the operation
rs 5-bits register file address of the first source operand
rt 5-bits register file address of the second source operand
rd 5-bits register file address of the result’s destination
shamt 5-bits shift amount (for shift instructions)
funct 6-bits function code augmenting the opcode

MIPS R-type Instructions

n MIPS assembly language arithmetic instructions:
add $t0, $s1, $s2
sub $t0, $s1, $s2

§ Each arithmetic instruction performs one operation.

§ Each specifies exactly three operands that are all
contained in the datapath's register file ($t0,$s1,$s2)

§ destination ¬ source1 op source2

§ Instruction Format

0 17 18 8 0 0x22

Chapter 2 — Introduction to MIPS 15

MIPS Data Types and Literals

n Data types:
n Byte, halfword (2 bytes), word (4 bytes).
n A character requires 1 byte of storage (stored as ASCII).
n An integer requires 1 word (4 bytes) of storage.

n Literals:
n Numbers entered as is: example 4
n Characters enclosed in single quotes: example 'b'
n Strings enclosed in double quotes: example "A string"

Example: MIPS Add Instruction

n C code: a = b + c; # (friendly to programmers)
n Assembly code: add a, b, c # (friendly to ???)
n Machine code: 00000010001100100100000000100000

(friendly to hardware)

Chapter 2 — Introduction to MIPS 16

Code Example

n C code: a = b + c + d + e;
n Assembly code:

add a, b, c add a, b, c
add a, a, d or add f, d, e
add a, a, e add a, a, f

n Assembly instructions are simple – fixed number of
operands (unlike C).

n Some sequences are better than others … the second
sequence needs one more temporary variable f.

Operands

n In C, each “variable” is a location in memory.
n In hardware, each memory access is expensive in terms

of time – if variable a is accessed repeatedly, it increases
performance if the variable is stored nearby, like an on-
chip scratchpad (register file). Thank of it as L0 cache.

n To simplify instructions, MIPS requires that every R-type
instruction (add, sub, etc.) operates only on register data.
This was a significant departure from Complex
Instruction Set Machines (CISC).

n The number of operands in a C program can be very
large; the number of operands in assembly is fixed …
there can be only so many scratchpad registers.

Chapter 2 — Introduction to MIPS 17

MIPS R-type Instructions

MIPS Bit-wise Logical Operations

Logical ops C operators Java operators MIPS instr

Shift Left << << sll
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

Chapter 2 — Introduction to MIPS 18

MIPS R-type Instructions

MIPS Recap

n MIPS: typical of RISC ISAs
n Keep it simple.
n Keep it small.
n Make the common case fast.

n MIPS Architecture
n MIPS Instruction set

n R-type
n Next class period: Immediate type instructions

